# Fixed Point Theorem in Fuzzy Metric Space 

Dr M Ramana Reddy<br>Assistant Professor of Mathematics, Dept. Of Mathematics, Sreenidhi Institute of Science and Technology, Hyderabad-501301


#### Abstract

In this present paper on fixed point theorems in fuzzy metric space . we extended to Fuzzy Metric space generalisation of main theorem . Mathematics Subject Classification: 47H10, 54A40


Keywords: Fuzzy metric space, Common fixed point. Fixed point theorem

## I. INTRODUCTION

Now a day's some contractive condition is a central area of research on Fixed point theorems in fuzzy metric spaces satisfying. Zadeh[10] in 1965 was introduced fuzzy sets. After this developed and a series of research were done by several Mathematicians. Kramosil and Michlek [5] Helpern [4] in 1981 introduced the concept of fuzzy metric space in 1975 and fixed point theorems for fuzzy metric space. Later in 1994, A.George and P.Veeramani [3] modified the notion of fuzzy metric space with the help of $t$-norm. Fuzzy metric space, here we adopt the notion that,
the distance between objects is fuzzy, the objects themselves may be fuzzy or not.

In this present papers Gahler [1],[2] investigated the properties of 2-metric space, and investigated contraction mappings in 2 -metric spaces. We know that 2 -metric space is a real valued function of a point triples on a set X, which abstract properties were suggested by the area function in the Eucledian space, The idea of fuzzy 2-metric space was used by Sushil Sharma [8] and obtained some fruitful results. prove some common fixed point theorem in fuzzy -metric space by employing the notion of reciprocal continuity, of which we can widen the scope of many interesting fixed point theorems in fuzzy metric space.

## II. PRELIMINARY NOTES

Definition 2.1. A tiangular norm * (shortly t- norm) is a binary operation on the unit interval [0, 1] such that for all $a, b, c, d \in[0,1]$ the following conditions are satisfied:

1. $\mathrm{a} * 1=\mathrm{a}$;
2. $a * b=b * a$;
3. $\mathrm{a} * \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$
4. $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$.

Example 2.2. Let $(X, d)$ be a metric space. Define $a * b=a b(o r a * b=\min \{a, b\})$ and for all $x, y \in X$ and $t>$ $0, M(x, y, t)=\frac{t}{t+d(x, y)}$. Then $(\mathrm{X}, \mathrm{M}, *)$ is a fuzzy metric space and this metric d is the standard fuzzy metric.

Definition 2.3. A sequence $\left\{x_{n}\right\}$ in a fuzzy metric space $(X, M, *)$ is said
(i). To converge to $x$ in $X$ if and only if $M\left(x_{n}, x, t\right)=1$ for each $t>0$.
(ii). Cauchy sequence if and only if $M\left(x_{n+p}, x_{n}, t\right)=1$ for each $p>0, t>0$.
(iii).to be complete if and only if every Cauchy sequence in X is convergent in X .

Definition 2.4. A pair ( $\mathrm{f}, \mathrm{g}$ ) or ( $\mathrm{A}, \mathrm{S}$ ) of self maps of a fuzzy metric space ( $\mathrm{X}, \mathrm{M}, *$ ) is said
(i). To be reciprocal continuous if $\lim _{n \rightarrow \infty} f g x_{n}=f x$ and $\lim _{n \rightarrow \infty} g f x_{n}=g x$ whenever there exist a sequence $\left\{\mathrm{x}_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=x$ for some $\mathrm{x} \in \mathrm{X}$.
(ii). semi-compatible if $\lim A S x_{n}=S x$ whenever there exists a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=x$ for some $\mathrm{x} \in \mathrm{X}$.

Definition 2.5. Two self maps A and B of a fuzzy metric space ( $X, M, *$ ) are said to be weak compatible if they commute at their coincidence points, that is $\mathrm{Ax}=\mathrm{Bx}$ implies $\mathrm{ABx}=\mathrm{BAx}$.

Definition 2.6. A pair $(A, S)$ of self maps of a fuzzy metric space ( $X, M, *$ ) is said to be Definition 2.7. A binary operation $*:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous t-norm if $([0,1]), *)$ is an abelian topological monoid with unit 1 such that $a_{1} * b_{1} * c_{1} \leq a_{2} * b_{2} * c_{2}$ whenever $a_{1} \leq a_{2}, b_{1} \leq b_{2}, c_{1} \leq c_{2}$ for all $a_{1}, a_{2}, b_{1}, b_{2}$ and $c_{1}, c_{2}$ are in $[0,1]$.

Definition 2.8. A sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ in a fuzzy 2-metric space ( $\mathrm{X}, \mathrm{M}, *$ ) is said
(i), To converge to x in X if and only if $\lim _{n \rightarrow \infty} M\left(x_{n}, x, a, t\right)=1$ for all $\mathrm{a} \in \mathrm{X}$ and $\mathrm{t}>0$.
(ii).Cauchy sequence, if and only if $\lim _{n \rightarrow \infty} M\left(x_{n+p}, x_{n}, a, t\right)=1$ for all $\mathrm{a} \in \mathrm{X}$ and $\mathrm{p}>0, \mathrm{t}>0$.
(iii). To be complete if and only if every Cauchy sequence in X is convergent in X .

Theorem 3.1 - Let A, B, S, T, L and M be a complete $\varepsilon$-chainable fuzzy metric space ( $\mathrm{X}, \mathrm{M}$ *) with continuous $t$-norm satisfying the conditions.
(1) $\quad L(X) \subseteq S T(X), M(X) \subseteq A B(X)$
(2) $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{LB}=\mathrm{BL}, \mathrm{MT}=\mathrm{TM}$;
3) ; there exists $\mathrm{k} \in(0,1)$ such that
$\min \{M(L x, M y, k t)\{M(A B x, M y, 2 t), M(A B x, S T y, t), M(A B x, L x, t), M(S T y, M y, t)\} \geq 0$
For every $x, y \in X, \alpha \in(0,2)$ and $t>0$. If $L, A B$ is reciprocally continuous, semi-compatible maps. Then $A, B$, $S, T, L$ and $M$ have a unique common fixed point in $X$.

Proof: Let $x_{0} \in X$ then from (1) there exists $x_{1}, x_{2} \in X$ such that $L x_{0}=S T x_{1}=y_{0}$ and $M x_{1}=A B x_{2}=y_{1}$. In general we can find a sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $X$ such that $\operatorname{Lx}_{2 n}=\operatorname{STx}_{2 n+1}=y_{2 n}$ and $\operatorname{Mx}_{2 n+1} y=x_{2 n+1}$ for $t>0$ and $\alpha=1-\mathrm{q}$ with $\mathrm{q} \in(0,1)$ in (4), we have

$$
\begin{gathered}
M\left(y_{2 n+1}, y_{2 n+2}, k t\right)=M\left(L x_{2 n+2}, M x_{2 n+1}, k t\right) \\
\min \left\{\begin{array}{c}
M\left(A B x_{2 n+2}, M x_{2 n+1},(2-(1-q) t)\right), M\left(A B x_{2 n+2}, S T x_{2 n+1}, t\right) \\
M\left(A B x_{2 n+2}, L x_{2 n+2}, t\right), M\left(S T x_{2 n+1}, M x_{2 n+1}, t\right)
\end{array}\right\} \geq 0
\end{gathered}
$$

$$
\min \left\{\begin{array}{c}
M\left(y_{2 n+1}, y_{2 n+1},((1+q) t)\right), M\left(y_{2 n+1}, y_{2 n}, t\right) \\
M\left(y_{2 n+1}, y_{2 n+2}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)
\end{array}\right\} \geq 0
$$

$=\min \left\{1, M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n+1}, y_{2 n+2}, t\right)\right\}$
$M\left(y_{2 n+1}, y_{2 n+2}, k t\right) \geq \min \quad M\left(y_{2 n+1}, y_{2 n}, t\right)$
Again $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}+2}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+3}$ with $\alpha=1-\mathrm{q}$ with $\mathrm{q} \in(0,1)$ in (4), we have
$M\left(y_{2 n+2}, y_{2 n+3}, k t\right)=M\left(L x y_{2 n+2}, M x{ }_{2 n+3}, k t\right)$
$\min \left\{\begin{array}{c}M\left(A B x_{2 n+2}, M x_{2 n+3},(1+q) t\right), M\left(A B x_{2_{n+2}}, S T x_{2 n+3}, t\right) \\ M\left(A B x_{2 n+2}, L x_{2_{n+2}}, t\right), M\left(S T x_{2 n+3}, M x_{2_{n+3}}, t\right)\end{array}\right\} \geq 0$
$\min \left\{\begin{array}{c}M\left(y_{2 n+1}, y_{2 n+3},((1+q) t)\right), M\left(y_{2 n+1}, y_{2 n+2}, t\right) \\ M\left(y_{2 n+1}, y_{2 n+2}, t\right), M\left(y_{2 n+2}, y_{2 n+3}, t\right)\end{array}\right\} \geq 0$
$=\min \left\{\begin{array}{c}M\left(y_{2 n+1}, y_{2 n+2}, t\right), M\left(y_{2 n+2}, y_{2 n+3}, q t\right), M\left(y_{2 n+1}, y_{2 n+2}, t\right), \\ M\left(y_{2 n+1}, y_{2 n+2}, t\right), M\left(y_{2 n+2}, y_{2 n+3}, t\right)\end{array}\right\} \geq 0$

As t-norm continuous, letting $\mathrm{q} \rightarrow 1$ we have,
$M\left(y_{2 n+2}, y_{2 n+3}, k t\right) \geq \min \left\{M\left(y_{2 n+1}, y_{2 n+2}, t\right), M\left(y_{2 n+1}, y_{2 n+3}, t\right)\right\}$
Hence,

$$
M\left(y_{2 n+1}, y_{2 n+3}, k t\right) \geq M\left(y_{2 n+1}, y_{2 n+2}, t\right)
$$

Therefore for all n ; we have
$M\left(y_{n}, y_{n+1}, t\right) \geq M\left(y_{n}, y_{n-1}, t / k\right) \geq M\left(y_{n}, y_{n-1}, t / k^{2}\right) \geq \ldots . \geq M\left(y_{n}, y_{n-1}, t / k^{n}\right) \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$.
For any $t>0$. For each $\varepsilon>0$ and each $t>0$, we can choose $n_{0} \varepsilon N$ such that $M\left(y_{n}, y_{n+1}, t\right)>1-\varepsilon$ for all $n>n_{0}$. For $\mathrm{m}, \mathrm{n} \varepsilon \mathrm{N}$, we suppose $\mathrm{m} \geq \mathrm{n}$. Then we have that

$$
\begin{aligned}
M\left(y_{n}, y_{m}, t\right) \geq & M\left(y_{n}, y_{n+1}, t / m-n\right), M\left(y_{n+1}, y_{n+2}, t, m-n\right), * \ldots \\
& * M\left(y_{m-1}, y_{m}, t / m-n\right)>(1-\epsilon) *(1-\epsilon) *(1-\epsilon) * \ldots . *(1-\epsilon) \geq(1-\epsilon)
\end{aligned}
$$

Hence $\left\{y_{n}\right\}$ is a Cauchy sequence in $X$; that is $y_{n} \rightarrow z$ in $X$; so its subsequences $\operatorname{Lx}_{2 n}, \operatorname{STx}_{2 n+1}, \mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Mx}_{2 \mathrm{n}+1}$ also converges to $z$. Since $X$ is $\varepsilon$-chainable, there exists $\varepsilon$-chain from $X_{n}$ to $X_{n+1}$, that is, there exists a finite sequence $x_{n}=y_{1}, y_{2}, \ldots \ldots . y t=x_{n+1}$ such that $M\left(y_{i}, y_{i-1}, t\right)>1-\varepsilon$ for all $t>0$ and $i=1,2, \ldots$. Thus we have $M\left(x_{n}\right.$, $\left.\mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right)>\mathrm{M}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{t} / \mathrm{l}\right) * \mathrm{M}\left(\mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{t} / \mathrm{l}\right) * \ldots * \mathrm{M}\left(\mathrm{y}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}}, \mathrm{t} / \mathrm{l}\right)>(1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon) * \ldots *(1-\varepsilon) * \geq(1-\varepsilon)$, and so $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$ and hence there exists $z \in X$ such that $x_{n} \rightarrow z$. Since the pair of $(L, A B)$ is reciprocal continuous; we have $\lim _{n \rightarrow \infty} L(A B) x_{2 n} \rightarrow L z$ and $\lim _{n \rightarrow \infty} A B(L) x_{2 n} \rightarrow A B z$ and the semi compatibility of $(L, A B)$ which gives $\lim _{n \rightarrow \infty} A B(L) x_{2 n} \rightarrow A B z$, therefore $L z=A B z$. We claim

$$
\mathrm{Lz}=\mathrm{ABz}=\mathrm{z} .
$$

Step 1: Putting $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ with $\alpha=1$ in (4), we have

$$
M\left(L z, M x_{2 n+1}, k t\right) \geq \min \left\{\begin{array}{c}
M\left(A B z, M x_{2 n+1}, t\right), M\left(A B z, S T x_{2 n+1}, t\right), \\
M(A B z, L z, t), M\left(S T x_{2 n+1}, M x_{2 n+1}, t\right)
\end{array}\right\}
$$

Letting $\mathrm{n} \rightarrow \infty$; we have
$M(L z, z, k t) \geq \min \{M(L z, z, t), M(L z, z, t), M(L z, L z, t), M(z, z, t)\}$
i.e.

$$
\mathrm{z}=\mathrm{Lz}=\mathrm{ABz} .
$$

Step 2 : Putting $\mathrm{x}=\mathrm{Bz}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ with $\alpha=1$ in (4), we have
$M\left(L(B z), M x_{2 n+1}, k t\right) \geq \min \left\{\begin{array}{c}M\left(A B(B z), M x_{{ }_{2 n+1}}, t\right), M\left(A B(B z), S T x_{{ }_{2 n+1}, t}\right) \\ M(A B(B z), L(B z), t), M\left(S T x_{2 n+1}, M x_{2 n+1}, t\right)\end{array}\right\}$
Since $\mathrm{LB}=\mathrm{BL}, \mathrm{AB}=\mathrm{BA}$, so $\mathrm{L}(\mathrm{Bz})=\mathrm{B}(\mathrm{Lz})=\mathrm{Bz}$ and $\mathrm{AB}(\mathrm{Bz})=\mathrm{B}(\mathrm{ABz})=\mathrm{Bz}$ letting $\mathrm{n} \rightarrow \infty$; we have $M(B z, z, k t) \geq \min \{M(B z, z, t), M(B z, z, t), M(B z, z, t), M(z, z, t)\}$
i.e.

$$
M(b z, z, k t) \geq M(B z, z, t)
$$

Therefore
$L(X) \subseteq S T(X)$, there exists $u \in X$, such that $\mathrm{z}=\mathrm{Lz}=$ Stu. Putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{u}$ with $\alpha=1$ in (4), we have
$M\left(L x_{2 n}, M u, k t\right), \min \left\{\begin{array}{c}M\left(A B x_{2 n}, M u, 2 t\right), M\left(A B x_{2 n}, S T u, t\right), \\ M\left(A B x_{2 n}, L x_{2 n}, t\right), M(S T u, M u, t)\end{array}\right\} \geq 0$
Letting $\mathrm{n} \rightarrow \infty$; we have

$$
M(z, M u, k t), \min \{M(z, M u, t), M(z, z, t), M(z, z, t), M(z, M u, t)\} \geq 0
$$

i.e.

$$
M(z, M u, k t) \geq M(z, M u, t)
$$

Therefore

$$
\mathrm{Z}=\mathrm{Mu}=\mathrm{STu} .
$$

Since M is ST-absorbing; then

$$
M(S T u, S T M u, k t) \geq M(S T u, M u, t / R)=1
$$

i.e. $\mathrm{STu}=\mathrm{STMu}=>\mathrm{z}=\mathrm{STz}$.

Step 4 : Putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{z}$ with $\alpha=1$ in (4), we have
$M\left(L x_{2 n}, M z, k t\right), \min \left\{\begin{array}{c}M\left(A B x_{2 n}, M z, t\right), M\left(A B x_{2 n}, S T z, t\right), \\ M\left(A B x_{2 n}, L x_{2 n}, t\right), M(S T z, M z, t)\end{array}\right\} \geq 0$
Letting $\mathrm{n} \rightarrow \infty$; we have

$$
M(z, M z, k t), \min \{M(z, M z, t), M(z, z, t), M(z, z, t), M(z, M z, t)\} \geq 0
$$

i.e.

$$
M(z, M z, k t) \geq M(z, M z, t)
$$

Therefore

$$
\mathrm{z}=\mathrm{Mz}=\mathrm{STz} .
$$

Step 5 : Putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{Tz}$ with $\alpha=1$ in (4), we have
$M\left(L x_{2 n}, M(T z), k t\right), \min \left\{\begin{array}{c}M\left(A B x_{2 n}, M(T z), t\right), M\left(A B x_{2 n}, S T(T z), t\right), \\ M\left(A B x_{2 n}, L x_{2 n}, t\right), M(S T(T z), M(T z), t)\end{array}\right\} \geq 0$
Since MT $=\mathrm{TM}, \mathrm{ST}=\mathrm{TS}$ therefore $\mathrm{M}(\mathrm{Tz})=\mathrm{T}(\mathrm{Mz})=\mathrm{Tz}, \mathrm{ST}(\mathrm{Tz})=\mathrm{T}(\mathrm{STz})=\mathrm{Tz}$;
Letting $\mathrm{n} \rightarrow \infty$; we have

$$
M(z, T z, k t), \min \{M(z, T z, t), M(z, z, t), M(z, z, t), M(T z, T z, t)\} \geq 0
$$

i.e.

$$
M(z, T z, k t) \geq M(z, T z, t)
$$

Therefore

$$
\mathrm{z}=\mathrm{Tz}=\mathrm{Sz}=\mathrm{Mz} .
$$

Hence

$$
\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Lz}=\mathrm{Sz}=\mathrm{Mz}=\mathrm{Tz}
$$

Uniqueness : Let w be another fixed point of A, B, L, S, M and T. Then putting $\mathrm{x}=\mathrm{u}, \mathrm{y}=\mathrm{w}$ with $\alpha=1$ in (4) we have
$M(L u, M w, k t), \min \left\{\begin{array}{c}M(A B u, M w, t), M(A B u, S T w, t), \\ M(A B u, L u, t), M(S T w, M w, t)\end{array}\right\} \geq 0$
$\min \{M(u, w, t), M(u, w, t), M(u, u, t), M(w, w, t)\} \geq 0$
Therefore

$$
M(u, w, k t) \geq M(u, w, t)
$$

Hence

$$
\mathrm{z}=\mathrm{w} \text {. }
$$

Corollary 3.2 : Let A, B, S, T, L and M be a complete $\varepsilon$-chainable fuzzy metric space ( $\mathrm{X}, \mathrm{M},{ }^{*}$ ) with continuous t -norm satisfying the conditions (1) to (3) of theorem 3.1 and ; (5) there exists $k \in(0,1)$ such that $\min \left\{M(L x, M y, k t),\left\{\begin{array}{c}M(A B x, M y, 2 t), M(A B x, S T y, t), \\ M(A B x, L x, t), M(S T y, M y, t), M(S T y, L x, 2 t)\end{array}\right\}\right\} \geq 0$
For every $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \alpha \varepsilon(0,2)$ and $\mathrm{t}>0$. If $\mathrm{L}, \mathrm{AB}$ is reciprocally continuous, semi-compatible maps. Then $\mathrm{A}, \mathrm{b}$, $S, T, L$ and $M$ have a unique common fixed point in $X$.

## REFERENCES

[1]. Y.J. Cho, B.K. Sharma, D.R. Sahu Semicompatibility and fixed point Math. Apon. 42(1995), 1, 91-98.
[2]. S.H. Cho, J.H. Jung, On common fixed point theorems in fuzzy metric spaces, int. mathematical Forum, 1, 2006, 29, 1441451.
[3]. M.Erceg, Metric spaces in fuzzy set theory, J.Math. Anal. Appl., 69 (1979), 205-230.
[4]. M.Grabiec fixed points in fuzzy metric space fuzzy sets and system, 27, (1998) 385-389.
[5]. A.George and P.Veermani., On some results in fuzzy metric spaces. Fuzzy sets and sysem 64 (1994), 395-399.
[6]. G.Jungck, compatible mappings and fixed points, Internat. J.Math. Math. Sci. 9(4) (1986), 771-779.
[7]. O.Kramosil, J.Michelak, Fuzzy metric and statistical metric space, Kybernetika, 11 (1975), 326-334.
[8]. U.Mishra, A.S. Ranadive, \& D.Gopal, Fixed point theorems via absorbing maps; Thai J.Math., vol. 6(1) (2008) 49-60.
[9]. A.S. Ranadive, A.P.Chouhan, Common fixed point theorem in fuzzy metric spaces, (Accepted) Proc. Of Math. Soc., B.H.U. Vol. 24.
[10]. A.S.Ranadive, D.Gopa, U.Mishra, On some open problems of common fixed point theorems for a pair of noncompatible self-maps. Proc. Of Math. Soc., B.H.U. Vol. 20 (2004), 135-141.
[11]. B.Singh, and S.Jain, semi-compatibility and fixed point theorem in fuzzy metric space using implicit relation Int. Jour of Math. And Math. Sci. 2005 : 16 (2005) 2617-2619.
[12]. B.Schwizer and Skalar, Statistical metric spaces, Pacific J.Math. 10 (1960), 313334.
[13]. R.Vasuki, Common fixed point for rweakly commuting maps in fuzzy metric spaces, Indian J.Pure and Applied Mathematice (1999), 419-423.
[14]. L.A. Zadeh, Fuzzy sets Inform. And Cont., 89 (1965) 338-353.

